
EECS 482 Introduction to Operating Systems
Spring/Summer 2020

Lecture 17: File systems

Based on slides by Harsha V. Madhyastha

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda
1. Grader2 is up.

2. Projects 3 and 4 extended 2 days.

3. Storage devices.

4. File systems.

2

Agenda
1. Grader2 is up.

2. Projects 3 and 4 extended 2 days.

3. Storage devices.

4. File systems.

3

Grader2 outage
What I’ve been told: Problem was a change to the Cosign
authentication service used on grader2 webserver that wasn’t
compatible with the domain wildcarding it uses.

ITS installed an exception and it came back online around 6:00 pm
yesterday.

What I’ve done: I’ve moved the due dates for P3 and P4 out by 2
days. It’s all the slack I have.

P3 July 27  July 29
P4 August 15  August 17

4

Agenda
1. Grader2 is up.

2. Projects 3 and 4 extended 2 days.

3. Storage devices.

4. File systems.

5

6

Operating system

Applications

Hardware

Virtual machine interface

Physical machine interface

Dealing with
heterogeneity

Many different types of disks
and other devices and lots of
different interfaces, e.g., ESDI,
USB, SCSI, SATA, Fiber
channel, m.2.

Need a way of managing this
diversity.

7

Device drivers

Higher level of the OS

Applications

Hardware

Virtual machine interface

Physical machine interface

Device abstraction

Dealing with
heterogeneity

Solution is to add a device
driver abstraction inside the
operating system to hide the
differences between similar
classes of devices.

Device drivers create an
abstraction of a disk as array of
disk blocks.

8

Device drivers

Higher level of the OS

Applications

Hardware

Virtual machine interface

Physical machine interface

Device abstraction

Dealing with
heterogeneity

Device drivers are usually
supplied by the device
manufacturers.

Because they run as a trusted
part of the kernel, in the past,
they’ve been a major reason
for Windows crashes.

9

Storages devices are slow
How to account for slow seek times?

1. Caching.

2. Scheduling of I/O requests, SSTF, SCAN, C-SCAN.

3. Store related items together on disk, e.g., blocks
within a file, files within a directory, files with the
directory.

10

Agenda
1. Grader2 is up.

2. Projects 3 and 4 extended 2 days.

3. Storage devices.

4. File systems.

11

File systems
A file system is a data structure on disk which ensures that data
persists across:
1. Power outages.
2. Machine crashes/reboots.
3. Process creation/exit.

How to enable persistence across these events?
1. Use persistent storage medium.
2. Write data carefully, ensuring the sequence of writes will not

result in unusably corrupted data if the system crashes.
3. Avoid use of addresses that change across processes, meaning

any addresses have to refer to locations on the disk.

12

The file system API
The application programming interface (API) to a file system
typically provides these basic functions (plus many more.)
1. Create a file.
2. Delete file.
3. Read a file beginning at an offset or current position.
4. Write a file beginning at an offset or current position.
5. List a directory.
6. Create directory.
7. Move and rename files and directories.

Alternate interface: SQL  Database

13

File system workloads
Optimize data structure for the common case.

Some general rules of thumb:
1. Most file accesses are reads. The OS can spend more time

writing if means reads will be faster.
2. Most programs access files sequentially and entirely.
3. Most files are small, 1KB to 10KB, but most of the space is

taken up by large files.

14

File abstraction
Reality: One (or a few) disks to store data.

Each is an array of (logical) blocks.

Abstraction: Numerous storage objects (files).
Each is an array of bytes.

Challenges:
How to name files and relate them to disk blocks?
How to find and organize files?

15

How to store a file?
Need to store metadata.

File name and size.
Owner and permissions.
Time of creation and last access.

Need pointers to data.
Pointer must be independent of process virtual address.
Use logical block number to point to data on disk.

Store in a file header.
inode in Unix, Master File Table record in NTFS.
Structure that describes file and allows you to find data.

16

Contiguous allocation
File = array of blocks (an “extent”).

Similar to base-and-bounds memory allocation.
Reserve space when the file is created.
If the file gets too big, move it to a larger free area.
File header contains starting location of file and size.

Pros and cons?
+ Fast sequential access.
+ Easy random access.
- Wastes space in external fragmentation.
- Difficult to grow file.

We will solve the fragmentation problem the same way we did with
memory allocation.

17

Indexed files
File = fixed size array of block pointers.

Just like a page table.

Pros and cons?
+ Easy to grow a file.
+ Easy random access.
- But potentially slow for sequential access.

How could sequential access be improved?
When growing a file, allocate new blocks close to previous blocks
on the same track or cylinder.
Increase the allocation unit with a larger block size or by allocating
clusters of blocks together.

What happens with very large files or files with “holes”, places with no
data?

You need an enormous table.
18

File
block #

Disk
block #

0 18
1 50
2 -1
3 -1

Multi-level indexed files
File = tree of block pointers

19

level 1
node

File block # Disk block #
0 18
1 50
2 8
3 15

level 2
node

File block # Disk block #
4 20
5 11
6 3
7 43

Pros?
Files can easily grow and have holes.
Allows large files, but small files don’t waste header space.

Multi-level indexed files
File = tree of block pointers

20

level 1
node

File block # Disk block #
0 18
1 50
2 8
3 15

File block # Disk block #
4 20
5 11
6 3
7 43

Cons?
Could have lots of seeks for sequential access.
Performance hit due to the indirection.
Still, a limit on filesize.

level 2
node

Multi-level indexed files
File = tree of block pointers

21

level 1
node

File block # Disk block #
0 18
1 50
2 8
3 15

File block # Disk block #
4 20
5 11
6 3
7 43

Solution
Performance improved with caching, which works well because
the block pointers are small.
File size limits are increased with non-uniform depth indices.

level 2
node

Non-Uniform depth for extremely large files

22

Index
node 1 2 0 0

File block
#

LBN

0 18

1 50

2 8

3 15

Indirect
Block

File block
#

LBN

4-7 3

8-11 4

12-15 0

16-19 0

File block
#

LBN

4 24

5 25

6 26

7 27

Double
Indirect
Block

File block
#

LBN

8 28

9 29

10 30

11 31

Representing files
Can have other dynamic ways of allocating file.

Must ensure that location of file header does not change
as the file grows.

Example: Header is head of linked list.
+ Easy to append or insert.
- Slow sequential access.
- Really slow random access.

23

Naming and directories
How to specify file to be accessed?

File name, click on icon, or by attributes or contents.
File name is usually a hierarchical path.

E.g., /users/nham/482/notes
Allows users to group related files into one folder and assign
permissions.
Allows easy searching, e.g., “ls /users/nham/482”

Must translate file name to disk block # of header.
What data structure to use to store mapping?
Tree of directories.
Why not a hash table?
Hard to traverse single directory.

24

Directories
Directory: mapping information for a set of files

Name of file  file header’s disk block # for that file.
Once, array of (name, file header’s disk block #) entries.
Modern file systems: hash table or B-tree.

Directories and files are largely equivalent.
Same storage structure.
Directory entry points to inode for file or directory.

25

Directory Example

Any differences in allowing application to update file versus
directory?
Users can put arbitrary data in a file. But a user can’t be allowed
to corrupt the file system by writing junk to a directory, solved with
limited set of system calls for updating directories.

26

Name Block #
“bin” 100

“users” 35
“tmp” 43

“foo.txt” 254

/ directory

Name Block #
“harshavm” 23
“pmchen” 99
“nham” 0

0

/users directory

Name Block #
“482.txt” 44

0
“src” 55

“foo.txt” 33

/users/nham directory

Example: /users/nham/482/notes
1. Read the file header for / (root directory), which contains

pointers to data blocks of the / directory.
2. Read data blocks of /, contains list of the files and

directories in /. Each entry contains amapping from
name  header’s disk block #. One of those entries is
“users”.

3. Read file header for /users.
4. Read data blocks for /users.
5. Read file header for /users/nham.
6. Read data blocks for /users/nham.
7. Read file header for /users/nham/482.
8. Read data blocks for /users/nham/482.
9. Read file header for /users/nham/482/notes.
10. Read first data block for /users/nham/482/notes.

27

May be helped by
caching the file header
for the current working
directory.

Unified view of multiple storage devices
Combine multiple storage devices into a file system

Each device contains own file system (starting with its root)
A directory entry can point to the root of a different device
(often a mount point for a new file system).

Example:
/ (root)

bin (same device as /)
etc (same device as /)
tmp (separate storage device)
afs (network storage “device”)

Directory entry: 1) file, 2) directory, or 3) device

28

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 17: File systems
	Agenda
	Agenda
	Grader2 outage
	Agenda
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Storages devices are slow
	Agenda
	File systems
	The file system API
	File system workloads
	File abstraction
	How to store a file?
	Contiguous allocation
	Indexed files
	Multi-level indexed files
	Multi-level indexed files
	Multi-level indexed files
	Non-Uniform depth for extremely large files
	Representing files
	Naming and directories
	Directories
	Directory Example
	Example: /users/nham/482/notes
	Unified view of multiple storage devices

